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A Strong Law of Large Numbers for Iterated 
Functions of Independent Random Variables 
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We study sequences of random variables obtained by iterative procedures, 
which can be thought of as nonlinear generalizations of the arithmetic mean. 
We prove a strong law of large numbers for a class of such iterations. This gives 
rise to the concept of generalized expected value of a random variable, for which 
we prove an analog of the classical Jensen inequality. We give several applica- 
tions to models arising in mathematical physics and other areas. 

KEY W O R D S :  Law of large numbers; hierarchical models: disordered 
systems: self-averaging: martingales. 

I N T R O D U C T I O N  

In the last 25 years probabil i ty theory has been significantly influenced by 
ideas f rom mathemat ical  physics, in particular by the renormalizat ion 
g roup  theory of  K. Wilson (for a discussion of  relevant physical ideas see, 
e.g., refs. 21 and 11. It has been pointed out  that  the classical theory of  
addit ion of  independent  r andom variables can be thought  of  in the renor- 
malization group framework/9~ While implementing the renormalizat ion 
g roup  ideas at a r igorous mathemat ical  level has turned out  to be in 
general a very difficult task, one class of  mode l s - - the  hierarchical m o d e l s - -  
is simpler in that it has some renormalizat ion ideas "built in." At the same 
time, hierarchical models are far from trivial and display rich behavior  
believed to be representative for more  complicated models in the areas of  
statistical physics, disordered systems, and quan tum field theory. This has 
resulted in a great deal of  interest in the mathematical  analysis of  various 
types of  hierarchical models. In particular, Dyson- type  models 17~ have been 
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extensively studied; see, e.g., refs. 4 and ~7~ for some spectacular achieve- 
ments and ref. 10 for more recent work. 

In this paper we study another type of model, equally often encoun- 
tered in applications (see references below). In these models a sequence of 
random variables is defined inductively, using a fixed function f of k 
variables. Given a random variable X at the stage n, the next variable is 
f(X~ ..... Ark), where Xz ..... Xk are independent copies of 2". Hierarchical 
models of this type are widely used in the theory of disordered systems and 
in several other applied areas (see references in Section 1 ). It is thus impor- 
tant to develop a theory studying these models from a rigorous mathemati- 
cal point of view. This paper goes in this direction by establishing a general 
convergence theorem which generalizes the classical law of large numbers 
and at the same time has a clear physical interpretat ion--that  of self- 
averaging. We illustrate the theorem with various applications to specific 
models. The related natural (and more complicated) question of central 
limit theorems for such sequences will be studied in a companion paperJ -'~ 

1. THE M A I N  RESULT 

Let .~1'= (X~, X_,,...) be a sequence of i.i.d, random variables on a prob- 
ability space (t-2, ~-, P) and let f be a real-valued function of k real 
variables. We will use f to define another sequence of i.i.d, random 
variables ~ = ( Yt, Y2,...) as follows 

Y, = J'( X j  ..... X ,  ) ( I . I )  

11_, = J ' ( X k + ,  ..... X_,k.) (1.2) 

Y,= f(X,,_,,~+, ..... Y,O (1.3) 

We will denote the resulting sequence ~ by ~of. We thus have a map 
on the space of i.i.d, sequences of random variables. This is similar to 

block-spin transformations used in the study of spin systems and quantum 
field theory models. The difference is that in those models the spins are 
independent and the transformation is linear, whereas here, conversely, 
independent variables are "blocked" in a nonlinear fashion. Iterating this 
map with the initial condition .~r~m, we obtain a sequence ~"~,  ~ .... of  
i.i.d, sequences, where ~ " +  ~ =  ,~Y'~"~ for n = 0, 1 ..... We will write 

.~ ' ( " )  ~ ( X ' l l ' l  Yl" )  i ..2 .... , (1.4) 
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We are interested in the asymptotics of the distribution of Xt~ ''~ and in the 
behavior with probability one of the sequence (Xc~ ~ X~ ~ ..... X~[",...) as 
17---40(3. 

In the special case when XC( ~ is integrable with E ( X ~ ~  and 
f ( x ~  ..... x, ,)  = (x~ + . . .  + x , ) / k  the weak law of large numbers implies that 

X~l,, ~ a P (1.5) 

and the strong law of large numbers says that 

P(X~I ''~ ~ / t )  = 1 (1.6) 

Our problem can thus be thought of as an analog of this classical situation 
for iterations of nonlinear averaging operations. 

Sequences obtained in the above way are widely studied in statistical 
physics and related fields, where they come from the so-called hierarchical 
models. These are models in which the renormalization group approach 
developed by K. Wilson takes a particularly simple form. For example, 
models in equilibrium statistical mechanics of disordered systems are dis- 
cussed in ref. 5. Hierarchical models of random resistor networks have been 
studied extensively in the literature; see, e.g., refs. 19, 2, 14, and 15. in 
material science hierarchical sequences of random variables appear as 
mathematical models of fiber strength and material failure? ~-'~ Yet another 
example comes from the so-called biased coin problem/3~ In these applica- 
tions the function f used to define the sequence has some properties of a 
mean. It is often homogeneous of degree one: 

f ( c x ~  ..... cx , , )  = c f ( x ,  ..... x , , )  (1.7) 

and satisfies 

f ( c ,  c ..... c ) = c  (1 .8)  

Depending on the particular model, it may also have some convexity, sym- 
metry, or subadditivity properties. 

A general theorem about a class of hierarchical sequences of random 
variables has been proven by Shneiberg/~6~ He assumed that f was taking 
values in the unit interval, was homogeneous of degree one under multi- 
plication by positive numbers, convex separately in each variables and 
satisfied a normalization condition f(1 ..... 1 ) = 1. Under these conditions he 
proved that the sequence X~[ '~ converges to a constant in probability [in 
fact, also in L2(p)]. His theorem applies, for example, to hierarchical 
resistor networks with bounded conductivities. 
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In this paper  we study some other (but not disjoint) classes of itera- 
tions, for which we prove a strong form of the law of large numbers, i.e., 
almost sure convergence of the sequence X(K ''~ (in the above notation) to a 
constant. 

Theorem 1. Suppose that f is uniformly bounded below and 
satisfies 

x l +  ...  + x k  
f (x l  ..... xk) ~ (1.9) 

k 

for any real Xm ..... xx. in the domain of its definition. If the variables X(,~ )) 
have a finite mean, then the sequence X() '') converges almost surely to a 
constant. 

Remark. The proof  below has been inspired by the well-known 
method of proving the law of large numbers using reversed-time mar-  
tingales? ~6~ An additional difficulty comes from the fact that f is not 
assumed to be symmetric. While in most natural applications it has some 
symmetry properties (see below), which would simplify the proof, we prove 
the theorem without such additional assumptions. 

Proof. We assume that J'>~O; the proof  in the general case follows 
the same idea. We swill first prove that the sequence 

x T ) +  . . .  + xi!,) 
Z , =  k (1.10) 

converges almost surely to a constant. Let us define ~,, to be the ~-algebra 
generated by the variables X(: ')+ v(,,) X(O) v(o) �9 ' " + -* k , k,,*, + l, -~k~ +, + 2,.-.. Clearly, 
the ~,, form a decreasing sequence of cr-algebras and, for each n, Z ,  is 
.-~,-measurable. Furthermore,  by the obvious symmetry, 

Y ( ' )  I + I ) y ( n  + I E(Z,,I~,+I)= E(X( / ' )+ ' ' '+ '*k  iX(: ' +'""k )) 

1 ~f'(n) I "y(n + l ) . . y ( n + l ) )  -s ' ) + ' ' ' ' ' k  z ~"l  + '  "'~- (1.11) 

By (1.9), the last expression is bounded below by 

1 
y ( . +  l)) = Z . +  -EtX("+i)k ~ l +" '+ '*kY("+l ) IX( l  ' ' + i ) + ' ' "  + " k  l (1.12) 



Law of Large Numbers 1377 

We have thus shown that the sequence (Z,,) is a reversed-time submar- 
tingale relative to the family (4 , )  of a-algebras (see ref. 13 for the definition 
and fundamental theorems about reversed-time submartingales). Since 
Z,, >i O, the convergence theorem for nonnegative reversed-time submar- 
tingales ~ 13) implies that Z,, converges almost surely to a random variable Z. 
We will next show that Z is constant with probability one. The classical 
Hewitt-Savage zero-one law says that a measurable function of independ- 
ent and identically distributed random variables X~m ~ X~ ~ ..... invariant 
under any finite permutation of the indices, is almost surely equal to a con- 
stant. While Z does not satisfy this symmetry condition, it is clearly 
invariant under some special permutations of indices, in particular, for each 
n it does not change its value under the permutation which transposes 1 
with k " +  1, 2 with k " +  2 ..... k" with 2k", and leaves all the other indices 
unchanged. The standard proof of the Hewitt-Savage law (e.g., in ref. 6) 
shows that this weaker symmetry is enough to prove that Z is almost sur- 
ely constant (in other words, the assumptions of the Hewitt-Savage 
theorem can be weakened to apply to the present situation without chang- 
ing the proof). We have thus shown that Z,, converges almost surely to a 
constant. We now want to show that this is also true for X~) ''). It is clearly 
enough to show this in the case when the limit of Z,, is zero, which from 
now on we assume for notational convenience. Since Z,, converges to zero 
in probability and since, by independence of X~ ''), , Y~") 

P(Z,, > e) ~ P(XCl"~> e) k (1.13) 

it follows that X~) ''~ converges to zero in probability (and, consequently, the 
same is true about X~ ''~ for all l<~k). Let us first assume that all X~ '') are 
bounded in absolute value. The general case is proven below using the 
same idea, but the proof is less transparent, due to a truncation. Note that 
the variables X "') ..... X~. '') are independent from the a-algebra ~,, generated 
by XI) ~ ..... X~) ''). If we denote by ~q~_ the smallest a-algebra generated by all 
~,,, the dominated convergence theorem for conditional expectations t6~ 
implies that with probability one 

X ~ l " ' = g E k Z , , l ~ , ] - ( k - 1 ) E [ W ~ ) " ) ~ E [ O l f ~ _ ] - ( k - 1 ) c = c  (1.14) 

since by the (unconditional) bounded convergence theorem, almost sure 
convergence of Z . - ~  0 implies that E[XI~ ''~] ~ O. This proves the bounded 
case. The general case is handled in a similar way, except that we need to 
introduce the truncated variables: for a random variable Y, Y* will denote 
- 1 .  Y, or 1 according to whether Y < - I , - I ~ < Y ~ < I .  or Y > I ,  respec- 
tively. Let v - Y l , . -  - yl,,~ Since by assumption, XI)")+ V. ~ 0 ,  it �9 " - - ~ 2  n " ' '  / ~ A  k �9 

follows that also (X ' ( I ' ) )  # -=[- V,~  --=-) O. Introducing the a-algebras ~,, as above, 

822, 86, 5-6-31 
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we obtain (XI['I) * +/z,,--*0 almost surely, where/z,, =E(V,*) is a sequence 
of constants. It follows that (XI~"~) * + lz,, ~ 0 in probability. Since X~t ''~ ---, 0 
in probability, we also have (X~"~) *-- ,  0 in probability and it follows that 
/6, --* 0, which implies that with probability one (X~t") * goes to zero and 
the same follows for X~t ''~, which completes the proof. 

2. APPLICATIONS A N D  EXTENSIONS 

2.1. Random Resistor Ne tworks  

Theorem 1 applies to several hierarchical networks of random 
resistors. As an examples we consider the so-called diamond network, 
which is an iteration of the parallel connection of two pairs of sequentially 
connected resistors. The function f corresponding to this iteration is 

1 1 
f ( x t ,  x2,  x3, x4) -- F (2.1) 

1/x ,  + l/x2 1/x3 + l/x4 

where the xi are nonegative (and 1/0= + o  o; 1 / (+00)=0) .  The xi repre- 
sent conductivities of the random resistor and f ( x  t , x,_, x 3, x4) is the effec- 
tive conductivity of the system of four resistors arranged in a "diamond." 
It is easy to see, using the inequality between harmonic and arithmetic 
means, that 

f ( x l ,  x,,_ x 3 , x4) <-N x t + x2 +4 x3 + x4 (2.2) 

We can thus apply Theorem 1 and conclude that the sequence X~ ''~ of 
variables obtained by iterations o f f  converges almost surely to a constant. 
This constant has the interpretation of the effective conductivity of the 
hierarchical diamond lattice in the infinite-volume limit. The above itera- 
tion has been extensively studied, numerically, analytically, and by rigorous 
computer-assisted methods. ~ tg. z. J4. ~51 The result of ref. 16 mentioned above 
applies here, giving convergence in L 2. Moreover, it follows from ref. 16 
that the limit is strictly positive if and only if P[X~m > 0] > p,~, where 

x / ~ -  1 (2.3) 
P '  2 

Physical heuristics based on renormalization group theory suggests that for 
p >  p,., suitably normalized random variables X~ ''~ - E [ X ~ " ]  should con- 
verge to a normal distribution, whereas at p = p,. a non-Gaussian behavior 
is likely. The first part of this conjecture is addressed (for a general class 
of iterations) in ref. 20. A non-Gaussian fixed point of the corresponding 



Law of Large Numbers 1379 

renormalization group map is constructed in ref. 15 by a (rigorous) com- 
puter-assisted proof. 

The above convergence proof  applies to many other hierarchical 
resistor networks, but not to the general case studied in ref. 16, since not all 
functions f coming from such networks satisfy the condition (1.9). On the 
other hand, whenever Theorem 1 applies, it gives a stronger result (almost 
sure convergence). 

2.2. Durability of Hierarchical Fibers 

In this model one studies fibers which can sustain an external force up 
to a random breaking point (see ref. 12 and references therein). Given two 
such fibers with breaking points Xt and x2, the composite fiber has the 
breaking point defined by the following rule: an applied force is equally dis- 
tributed to the two halves. If one fiber breaks, the other fiber inherits the 
force held by the other, i.e., it now has to sustain the entire load (and may 
also break if the load exceeds its breaking point). It is easy to see that the 
new breaking point is given by 

2(xl ^ x2) v xl v x2 (2.4) 

where x ^ y denotes the minimum of x and y and x v y the maximum of 
x and y. If  xt = x2 = a, the new breaking point is clearly 2a and it is thus 
natural to divide the above expression by 2. We are thus led to an iteration 
scheme with 

It is easy to see that 

x I x 2  
f ( x , , x 2 ) = ( x ,  ^ x2) v ~- v 5- z 

(2.5) 

f ( x , ,  x2) <x ,  + x2 (2.6) 
2 

so if the variables XI,~ ~J are arbitrary nonnegative i.i.d, random variables 
with E(X~,~ ~) < m, Theorem 1 guarantees convergence of the sequence X] ''~ 
to a constant. Note that f is neither convex nor concave as a function of 
any of the variables, so the results of ref. 16 do not apply in this case. 

2.3. The Biased Coin Problem 

A sequence of random variables obtained by iterating the function 
J ' (xt ,  x2) = (1 - e ) ( x  I A x2 )+e(x l  v x2) was considered in ref. 3 in relation 
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to the so-called biased coin problem. It is easy to see that for e ~ 1/2 we 
again have 

f ( x l ,  x2) ~<xl +x2  (2.7) 
2 

so that Theorem 1 applies again with any integrable variables ~o~ X,, . This 
strengthens a result obtained by different means in ref. 3. 

2.4. Relation to the Subadditive Ergodic Theorem and 
Comments on the Superadditive Case 

In some sense Theorem 1 is similar to Kingman's subadditive ergodic 
theoremJ 6~ In fact, the (multiparameter) subadditive ergodic theorem ~ 
can be used to prove almost sure convergence to an effective parameter in 
lattice models of statistical mechanics, conductivity, etc., ~s ~8~ in analogy 
with the application in Section 2.1. Due to lack of enough translational 
invariance in the assumptions of Theorem I, we do not see how to derive 
it from Kingman's theorem; another approach, based on martingale 
theory, seemed more appropriate. 

There is, of course, a theorem analogous to Theorem 1 for the case 
when 

x~ + .-- +Xk 
f ( x ,  ..... X~.) >1 k (2.8) 

In view of the above analogy with Kingman's theorem, it is natural to call 
an iteration like this "superadditive." If we want to use Theorem 1 with no 
extra work, however, we need to assume in the superadditive case that f is 
bounded above, a condition that is not always satisfied in interesting 
applications. For example, if in the biased coin problem e >/1/2, we have 

f ( x l , x , ) > x ~  + x2 
- 2 ( 2 . 9 )  

and consequently X~1 ") is a reversed-time supermartingale. Even though the 
function f is clearly not boundcd above, if the variables X~ ~ are bounded 
above, so is the resulting supermartingale and this implies almost sure con- 
vergence) ~31 

2.5. Jensen-Type Inequalities 

Given a random variable X and a function f such that Theorem 1 
applies to iterations of f,  starting from a sequence X ~~ in which all i 
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variables have the distribution of X, it is natural to interpret the limit of the 
sequence X~ ''~ as a nonlinear average of X. In particular, i f f(x~ ..... xk) = 
(xt + .. .  + xk)/k,  the limit (for an integrable initial distribution) is E [ X ] ,  
the mean of the variable X (by the law of large numbers). In the general 
case we will denote the limit by f*(X) .  In models of disordered systems 
f * ( X )  has the interpretation of an effective parameter (e.g., conductivity) of 
the model, arising in the infinite-volume limit as a result of a complicated 
averaging process applied to constituents of the system. It is natural to 
expect that f * ( X )  shares some properties of the expected value [note, 
however, that f * ( X )  can vanish for a nonnegative variables, even when the 
variable is not identically zero; this happens, for example, in the diamond 
network case when p < p,.]. 

D e f i n i t i o n .  A function g is called f-convex if for any x~ ..... Xk, 

g ( f ( x l  ,..., Xk)) < f ( g ( x l  ) ..... g(xk))  (2.10) 

Of course, in the case when f is the arithmetic mean, f-convexity is the 
usual convexity. 

Proposition. Assume that Theorem 1 applies to f and X in the 
above sense. Let g be f-convex, bounded below, continuous, increasing, 
and E [ g ( X ) ]  < oo. Then 

g ( f * ( X ) )  <~ f * ( g ( X )  ) (2.11 ) 

Remark .  This is a generalization of the usual Jensen inequality, 
which we obtain in the case when f *  is the usual expectation. 

Proof. Let YI ''~ denote the family obtained by iterations of the func- 
tion f with y~;o~__ g(XCiOl). We will prove by induction of n that 

g(XC~ '')) <~ Y~"J (2.12) 

For n = 0  this follows from the definition of y~o~. If the statement is true 
for n, then using f-convexity and monotonicity of g, we obtain 

g(X, ,  , , + ' ) )  = g( f (  X(, '') ..... X(k")) ) 

<<. f ( g tX ' ,  '') ..... g(X~"')) 

<< f(y~z,,~ ..... ~,,) y~(,+l Yk ) =  ~ (2.13) 

which proves (2.12). Taking the limit and using continuity of g, we get 
(2.11 ), as claimed. 
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Example. Let f be the diamond average considered above. Then a 
C2-function g is f-convex if and only if: (i) g is convex (in the usual sense), 
and (ii) the function ~b(x)= 1/g(1/x) is concave. 

Proof Suppose first that (i) and (ii) are satisfied. Then, for any 
x~ , x2, x3, x4 >1 O, concavity of ~b easily implies 

2 ) 2 (2.14) 
g 1/x, + 1/x2 <~ 1/g(x,)+ 1/g(x2) 

and 

( 2 ) 2 
g 1Ix 3 + l/x4 <~ 1/g(x 3) + 1/g(x4) (2.15) 

Hence, convexity of g gives 

1 

1/x t+I /x2  1/x3 + + . 

1 2 1 / x 2 ) + g ( 1 / x 3 2 + l / x 4 ) ]  ~<2 [g  ( l / x ,  + 

<~-} 1/g(x,) + 1/g(xz) + 1/g(x 3) + 1/g(x 4) 
(2.17) 

which is f-convexity of g. 
Conversely, the f-convexity of g 

[,/ 1 1 4) 1 1 
g i / x , + l / x z + l / x 3 + l / x  <~l/g(x~)+l/g(x2) + 1/g(x3) + 1/g(x4) 

(2.18) 

with xl =x2 and x 3 = x  4, implies (i), and with x I = x  3 and x z = x 4  it 
implies (ii), which ends the proof. 

Using the criterion above, we can show an example of a nontrivial 
f-concave function: g(x) = arc tan(x), x/> O. 

3. S U M M A R Y  

We have proven a law of large numbers for sequences obtained by 
iterations, including several models used in applied sciences. This allows us 
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to introduce a concept of nonlinear averages, for which we prove an analog 
of Jensen's inequality. A natural question of limit theorems for the suitably 
scaled sequence Xtt ''~ will be addressed in a companion paperJ 2~ 
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